Contributions of Structure Comparison Methods to the Protein Structure Prediction Field
نویسندگان
چکیده
Since their development, structure comparison methods have contributed to advance our understanding of protein structure and evolution (Greene et al, 2007; Hasegawa & Holm, 2009), to help the development of structural genomics projects (Pearl et al, 2005), to improve protein function annotations (D. A. Lee et al), etc, thus becoming an essential tool in structural bioinformatics. In recent years, their application range has grown to include the protein structure prediction field, were they are used to evaluate overall prediction quality (Jauch et al, 2007; Venclovas et al, 2001; Vincent et al, 2005; G. Wang et al, 2005), to identify a protein’s fold from low-resolution models (Bonneau et al, 2002; de la Cruz et al, 2002), etc. In this chapter, after briefly reviewing some of these applications, we show how structure comparison methods can also be used for local quality assessment of low-resolution models and how this information can help refine/improve them. Quality assessment is becoming an important research topic in structural bioinformatics because model quality determines the applicability of structure predictions (Cozzetto et al, 2007). Also, because prediction technology is now easily available and potential end-users of prediction methods, from template-based (comparative modeling and threading) to de novo methods, are no longer specialized structural bioinformaticians. Quality assessment methods have been routinely used for many years in structural biology in the evaluation of experimental models. These methods focus on several features of the protein structure (see (Laskowski et al, 1998) and (Kleywegt, 2000) and references therein). Because a number of quality issues are common to both experimental and predicted models, the use of these methods has been naturally extended to the evaluation of structure predictions. For example, in the case of homology modeling, a widely used structure prediction technique, evaluation of models with PROCHECK (Laskowski et al, 1993), WHAT-CHECK (Hooft et al, 1997), PROSA (Sippl, 1993), and others (see (Marti-Renom et al, 2000) and references therein) is part of the standard prediction protocol; WHATIF (Vriend, 1990) and PROSA (Sippl, 1993) have also been used in the CASP experiment to assess comparative models (Venclovas, 2001; Williams et al, 2001); etc. Some quality assessment problems are unique to the structure prediction field, given the specific characteristics of computational models, and have led to the development of
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملPrediction of Secondary Structure of Citrus Viroids Reported from Southern Iran
Abstract Viroids are smallest, single-stranded, circular, highly structured plant pathogenic RNAs that do not code for any protein. Viroids belong to two families, the Avsunviroidae and the Pospiviroidae. Members of the Pospiviroidae family adopt a rod-like secondary structure. In this study the most stable secondary structures of citrus viroid variants that reported from Fars province wer...
متن کاملIn Silico Prediction and Docking of Tertiary Structure of Multifunctional Protein X of Hepatitis B Virus
Hepatitis B virus (HBV) infection is a universal health problem and may result into acute, fulminant, chronic hepatitis liver cirrhosis, or hepatocellular carcinoma. Sequence for protein X of HBV was retrieved from Uniprot database. ProtParam from ExPAsy server was used to investigate the physicochemical properties of the protein. Homology modeling was carried out using Phyre2 server, and refin...
متن کاملPrediction of 3D protein Structure based on Mutation of AKAP3 and PLOD3 Gene in Case of Non-Obstructive Azoospermia
Background: The present study has been designed with the aim of evaluating A-kinase anchoring proteins 3 (AKAP3)and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) gene mutations and prediction of 3D proteinstructure for ligand binding activity in the cases of non-obstructive azoospermic male.Materials and Methods: Clinically diagnosed cases of non-obstructive azoos...
متن کاملA comparison of different network based modeling methods for prediction of the torque of a SI engine equipped with variable valve timing
Nowadays, due to increasing the complexity of IC engines, calibration task becomes more severe and the need to use surrogate models for investigating of the engine behavior arises. Accordingly, many black box modeling approaches have been used in this context among which network based models are of the most powerful approaches thanks to their flexible structures. In this paper four network base...
متن کامل